Semaine des Maths 20017-2018 ; le vendredi 16 mars, correction de l'énigme 5 ( Lycée 1)

$$ $$

Enoncé de l'énigme n° 5 (Lycée 1)

Si ABCD est un carré de côté 3 cm, quelle est l'aire de la région coloriée ?

Correction de l'énigme n° 3 (Lycée 2)

Avec les notations de la figure ci-dessus, l'aire du triangle FAD vaut : $\mathcal{A}= \dfrac{AD\times FH}{2}= \dfrac{3}{2}FH$.
Calulons alors les cooronnées de $H$, point se trouvant à l'intersection des droites $(BD)$ et $(AE)$.
  • Equation de $(BD)$:
    cette droite passe par l'origine O et a pour coeffifficient directeur 1.
    Ainsi (BD): $y=x$
  • Equation de $(AE)$:
    son coefficient directer est -3.
    et a pour équation réduite : $y-y_A= m(x-x_A)$, soit $y-3=-3(x-0)$
    Ainsi (AE): $y=-3x+3$
  • Coordonnées de H: $$\left\lbrace \begin{array}{l} y=x\\ y=-3x+3 \end{array} \right.\iff \left\lbrace \begin{array}{l} y=x\\ x=-3x+3 \end{array} \right. \iff \left\lbrace \begin{array}{l} y=x\\ x=\frac{3}{4} \end{array} \right.\iff \left\lbrace \begin{array}{l} y=\frac{3}{4}\\ x=\frac{3}{4} \end{array} \right.$$ Ainsi $H\left( \dfrac{3}{4}; \dfrac{3}{4}\right) $.
  • Alors $FH= 3- \dfrac{3}{4}= \dfrac{9}{4}$, puis l'aire coloriée vaut $\mathcal{A}= \dfrac{3}{2}\times \dfrac{9}{4}= \dfrac{27}{8} $.
Conclusion : l'aire coloriée vaut donc $3,375 cm^2$

Auteur : Luc Giraud