Accéder au contenu principal

Problèmes de Maths

Problèmes de Maths

Une idée pour motiver nos élèves.

  • Un problème de Maths posé sur une semaine
  • La solution proposée la semaine suivante
Enoncé du problème n° 93

Un groupe de voyageurs peut remplir complètement un train formé de wagons de 48 places, ou un autre train formé de wagons moins nombreux, mais de 64 places. D'autre part, si on répartissait ces voyageurs dans des compartiments à raison de 7 personnes par compartiment, ils en rempliraient un certain nombre et le dernier ne comprendrait que 5 personnes. Quel est le nombre de voyageurs, sachant qu'il est le plus petit nombre compatible avec ces conditions? Quels sont les nombres de wagons et, dans le dernier cas, de compartiments?

Correction du problème n° 93

On cherche le plus petit multiple commun de 48 et 64 dont le reste par la division euclidienne par 7 est 5.\\
En remarquant que $48=3\times 16$ et $64=4\times 16$, on en déduit que les multiples communs de 48 et 64 sont les multiples de $3\times 4\times 16 =192$. \\
On peut alors chercher les restes la division euclidienne par 7 des multiples successifs de 192.\\

$192 = 7\times 27+3$, le reste est 3;

$192\times 2 = 384$ et $384 = 7\times 54 +6$, le reste est 6;

$192\times 3 = 576$ et $576 = 7\times 82 +2$, le reste est 2;

$192\times 4 = 768$ et $768 = 7\times 109 +6$, le reste est 5 !

Il y a donc 768 passagers dans le train, qui occuperaient 110 compartiments de 7 passagers dans 16 wagons de 48 places ou 12 wagons de 64 places.

D'autres problèmes ?

Problème n° 119

Problème n° 118

Problème n° 117

Problème n° 116

Problème n° 115

Problème n° 114

Problème n° 113

Problème n° 112

Problème n° 111

Problème n° 110

Problème n° 109

Problème n° 108

Problème n° 107

Problème n° 106

Problème n° 105

Problème n° 104

Problème n° 103

Problème n° 102

Problème n° 101

Problème n° 100

Problème n° 99

Problème n°98

Problème n° 97

Problème n° 96

Problème n° 95

Problème n° 94

Problème n° 93

Problème n° 92

Problème n° 91

Problème n° 90

Problème n° 89

Problème n° 88

Problème n°87

Problème n° 86

Problème n° 85

Problème n° 84

Problème n°83

Problème n° 82

Problème n° 81

Problème n° 80

Problème n° 79

Problème n° 78

Problème n° 77

Problème n° 76

Problème n° 75

Problème n° 74

Problème n° 73

Problème n° 72

Problème n°71

Problème n° 70

Problème n° 69

Problème n° 68

Problème n° 67

Problème n°66

Problème n° 65

Problème n° 64

Problème n°63

Problème n° 62

Problème n° 61

Problème n° 60

Problème n° 59

Problème n° 58

Problème n° 57

Problème n°56

Problème n° 55

Problème n° 54

Problème n° 53

Problème n° 52

Problème n° 51

Problème n° 50

Problème n° 49

Problème n° 48

Problème n° 47

Problème n° 46

Problème n° 45

Problème n° 44

Problème n° 43

Problème n° 42

Problème n° 41

Problème n° 40

Problème n° 39

Problème n° 38

Problème n° 37

Problème n° 36

Problème n° 35

Problème n°34

Problème n° 33

Problème n°32

Problème n°31

Problème n°30

Problème n°29

Problème n°28

Problème n°27

Problème n°26

Problème n°25

Problème n°24

Problème n°23

Problème n°22

Problème n°21

Problème n°20

Problème n°19

Problème n°18

Problème n°17

Problème n°16

Problème n°15

Problème n°14

Problème n°13

Problème n°12

Problème n°11

Problème n°10

Problème n°9

Problème n°8

Problème n°7

Problème n°6

Problème n°5

Problème n°4

Problème n°3

Problème n°2

Problème n°1