Accéder au contenu principal

Problèmes de Maths

Problèmes de Maths

Une idée pour motiver nos élèves.

  • Un problème de Maths posé sur une semaine
  • La solution proposée la semaine suivante
Enoncé du problème n° 118

Un éleveur de Math-City conduit des vaches le long du fleuve.
Chaque vache lui coûte 15 € de nourriture par jour, et lui-même a des dépenses personnelles quotidiennes de 30 €.
Chaque soir, il dépose une vache dans la localité où il passe ; son troupeau diminue donc d’une unité.
Après avoir déposé sa dernière vache, il fait son bilan et se dit : « Tiens, le nombre d’euros que j’ai dépensés est le plus petit nombre qui est divisible par 1, par 2, par 3, par 4, par 5, par 6, par 7, par 8, par 9 et par 10. »
Combien le troupeau comportait-il de vaches au départ ?

Correction du problème n° 118
Le plus petit nombre qui est divisible par 1, par 2, par 3, par 4, par 5, par 6, par 7, par 8, par 9 et par 10 est : $$2 \times 3 \times 4 \times 5 \times 7 \times 3 = 2 520 $$ C’est donc la somme dépensée par l’éleveur.
Le dernier jour, il a dépensé 15 € pour sa vache et 30 € pour lui, soit au total $15 + 30$.
L’avant-dernier jour, il avait encore deux vaches.
Sa dépense était égale à $2 \times 15 + 30$.
Et le jour précédent,$ 3 \times 15 + 30$. Et ainsi de suite.
Si $n$ désigne le nombre de vaches au départ, et donc le nombre de jours qu’a duré le voyage, la dépense totale (2 520€) est : $$(1 + 2 + 3 + \cdots+ n)\times 15 + 30 n $$ On a donc : $$\dfrac{n(n + 1)}{2}\times 15 + 30 n = 2 520$$ Ce qui se simplifie en : $$n^2 + 5 n - 336 = 0 $$ D’où $n = 16$. Le troupeau comprenait 16 vaches au départ.

D'autres problèmes ?

Problème n° 119

Problème n° 118

Problème n° 117

Problème n° 116

Problème n° 115

Problème n° 114

Problème n° 113

Problème n° 112

Problème n° 111

Problème n° 110

Problème n° 109

Problème n° 108

Problème n° 107

Problème n° 106

Problème n° 105

Problème n° 104

Problème n° 103

Problème n° 102

Problème n° 101

Problème n° 100

Problème n° 99

Problème n°98

Problème n° 97

Problème n° 96

Problème n° 95

Problème n° 94

Problème n° 93

Problème n° 92

Problème n° 91

Problème n° 90

Problème n° 89

Problème n° 88

Problème n°87

Problème n° 86

Problème n° 85

Problème n° 84

Problème n°83

Problème n° 82

Problème n° 81

Problème n° 80

Problème n° 79

Problème n° 78

Problème n° 77

Problème n° 76

Problème n° 75

Problème n° 74

Problème n° 73

Problème n° 72

Problème n°71

Problème n° 70

Problème n° 69

Problème n° 68

Problème n° 67

Problème n°66

Problème n° 65

Problème n° 64

Problème n°63

Problème n° 62

Problème n° 61

Problème n° 60

Problème n° 59

Problème n° 58

Problème n° 57

Problème n°56

Problème n° 55

Problème n° 54

Problème n° 53

Problème n° 52

Problème n° 51

Problème n° 50

Problème n° 49

Problème n° 48

Problème n° 47

Problème n° 46

Problème n° 45

Problème n° 44

Problème n° 43

Problème n° 42

Problème n° 41

Problème n° 40

Problème n° 39

Problème n° 38

Problème n° 37

Problème n° 36

Problème n° 35

Problème n°34

Problème n° 33

Problème n°32

Problème n°31

Problème n°30

Problème n°29

Problème n°28

Problème n°27

Problème n°26

Problème n°25

Problème n°24

Problème n°23

Problème n°22

Problème n°21

Problème n°20

Problème n°19

Problème n°18

Problème n°17

Problème n°16

Problème n°15

Problème n°14

Problème n°13

Problème n°12

Problème n°11

Problème n°10

Problème n°9

Problème n°8

Problème n°7

Problème n°6

Problème n°5

Problème n°4

Problème n°3

Problème n°2

Problème n°1