Accéder au contenu principal

Problèmes de Maths

Une idée pour motiver nos élèves.

  • Un problème de Maths posé sur une semaine
  • La solution proposée la semaine suivante
Enoncé du problème n° 90

Si ABCD est un carré de côté 3 cm, quelle est l'aire de la région coloriée ?

Correction du problème n° 90
Avec les notations de la figure ci-dessus, l'aire du triangle FAD vaut : $\mathcal{A}= \dfrac{AD\times FH}{2}= \dfrac{3}{2}FH$.
Calculons alors les cooronnées de $H$, point se trouvant à l'intersection des droites $(BD)$ et $(AE)$.
  • Equation de $(BD)$:
    cette droite passe par l'origine O et a pour coeffifficient directeur 1.
    Ainsi (BD): $y=x$
  • Equation de $(AE)$:
    son coefficient directer est -3.
    et a pour équation réduite : $y-y_A= m(x-x_A)$, soit $y-3=-3(x-0)$
    Ainsi (AE): $y=-3x+3$
  • Coordonnées de H: $$\left\lbrace \begin{array}{l} y=x\\ y=-3x+3 \end{array} \right.\iff \left\lbrace \begin{array}{l} y=x\\ x=-3x+3 \end{array} \right. \iff \left\lbrace \begin{array}{l} y=x\\ x=\frac{3}{4} \end{array} \right.\iff \left\lbrace \begin{array}{l} y=\frac{3}{4}\\ x=\frac{3}{4} \end{array} \right.$$ Ainsi $H\left( \dfrac{3}{4}; \dfrac{3}{4}\right) $.
  • Alors $FH= 3- \dfrac{3}{4}= \dfrac{9}{4}$, puis l'aire coloriée vaut $\mathcal{A}= \dfrac{3}{2}\times \dfrac{9}{4}= \dfrac{27}{8} $.
Conclusion : l'aire coloriée vaut donc $3,375 cm^2$

D'autres problèmes ?

Problème n° 119

Problème n° 118

Problème n° 117

Problème n° 116

Problème n° 115

Problème n° 114

Problème n° 113

Problème n° 112

Problème n° 111

Problème n° 110

Problème n° 109

Problème n° 108

Problème n° 107

Problème n° 106

Problème n° 105

Problème n° 104

Problème n° 103

Problème n° 102

Problème n° 101

Problème n° 100

Problème n° 99

Problème n°98

Problème n° 97

Problème n° 96

Problème n° 95

Problème n° 94

Problème n° 93

Problème n° 92

Problème n° 91

Problème n° 90

Problème n° 89

Problème n° 88

Problème n°87

Problème n° 86

Problème n° 85

Problème n° 84

Problème n°83

Problème n° 82

Problème n° 81

Problème n° 80

Problème n° 79

Problème n° 78

Problème n° 77

Problème n° 76

Problème n° 75

Problème n° 74

Problème n° 73

Problème n° 72

Problème n°71

Problème n° 70

Problème n° 69

Problème n° 68

Problème n° 67

Problème n°66

Problème n° 65

Problème n° 64

Problème n°63

Problème n° 62

Problème n° 61

Problème n° 60

Problème n° 59

Problème n° 58

Problème n° 57

Problème n°56

Problème n° 55

Problème n° 54

Problème n° 53

Problème n° 52

Problème n° 51

Problème n° 50

Problème n° 49

Problème n° 48

Problème n° 47

Problème n° 46

Problème n° 45

Problème n° 44

Problème n° 43

Problème n° 42

Problème n° 41

Problème n° 40

Problème n° 39

Problème n° 38

Problème n° 37

Problème n° 36

Problème n° 35

Problème n°34

Problème n° 33

Problème n°32

Problème n°31

Problème n°30

Problème n°29

Problème n°28

Problème n°27

Problème n°26

Problème n°25

Problème n°24

Problème n°23

Problème n°22

Problème n°21

Problème n°20

Problème n°19

Problème n°18

Problème n°17

Problème n°16

Problème n°15

Problème n°14

Problème n°13

Problème n°12

Problème n°11

Problème n°10

Problème n°9

Problème n°8

Problème n°7

Problème n°6

Problème n°5

Problème n°4

Problème n°3

Problème n°2

Problème n°1